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Abstract—To implement an advanced control algorithm, measurements of process outputs are usually used to
determine control action to a process. Nevertheless, measurements of process outputs are often subjected to measuring
and signal errors as well as noise. Therefore, in this work, Generic Model Control (GMC), an advanced control
technique, with data reconciliation technique has been applied to control the pH of the pickling process consisting of
three pickling and three rinsing baths. Here, the data reconciliation problem involves six nodes and fourteen streams.
The presence of errors in the data set is determined and identified via measurement test. In addition, the measurement
error covariance is initially assumed to be a known variance matrix and is updated every iteration. Simulation results
have shown that the reconciled process data give a better view of the true states of the process than raw measuring
data. With these reconciled process data, the GMC controller can control the process at a desired set point with great
success.

Key words: Data Reconciliation, Generic Model Control, Steel Pickling Process

INTRODUCTION applied to chemical process system for control purposes for the past
ten years. A new method to handle the constraints on manipulated
The accuracy and consistency of process data are the key to effrariables for multivariable unstable processes was proposed by Lee
cient operation of chemical plants. The measurements from a physind Park [1991]. Kittisupakorn and Hussain [2000], and Arporn-
ical system are generally noisy and do not verify balance equawichanop et al. [2002] presented a model-based control strategy
tions. These raw data with undetected biased errors result in faldegether with extended Kalman Filter (EKF) for reactant concen-
control of the process so that they need to be reconciled to elimitration control of chemical reactors and for temperature control of
nate known errors and measurement noise. The problem of dataatch reactors with exothermic reactions, respectively. Furthermore,
reconciliation consists of obtaining and estimating the true statesonlinear control algorithms using feedback input-output lineariza-
that verify balance equations. tion applied to a lab-scale batch eater-interchange reaction system
Mah et al. [1976] studied the problem of the identification of the were discussed by Park and Park [1999]. Generic Model Control
source of gross errors and developed a series of rules (based on gralBMC), one of the most popular model-based controllers, is a con-
theoretical results) that enhance the effectiveness of the algorithrtiol algorithm capable of using a non-linear process model directly.
search. Data reconciliation problems involving linear models wereln 1989, Lee et al. extended the application of the model based GMC
well studied. Crowe et al. [1983] used a matrix projection methodcontroller to a forced circulation single-stage evaporator. Later, they
to decompose the problem so that the measured and unmeasudmined the use of GMC for controlling the level in a surge tank
variables can be evaluated sequentially. Later, Crowe [1986] extend1991]. Cott and Macchietto [1989], and Kershenbaum and Kit-
ed this method for problems with bilinear constraints. Various sta-tisupakorn [1994] studied the temperature control of an exothermic
tistical tests have been proposed to detect gross errors [Mah, 1998atch reactor via using a GMC controller. Farrell and Tsai [1995]
Romagnoli, 1983; Romagnoli and Stephanopoulos, 1981]. Genimplemented the GMC algorithm for the batch crystallization pro-
eral reconciliation methods are based on the hypothesis that measess.
urement errors are random Gaussian variables with a known cova- The steel pickling process has used concentrated chemicals in
riance matrix and zero mean. In most practical situations, this maproduction lines, and wastewater released from the process con-
trix is unknown or known approximately [Keller et al., 1992; Valko tains hazardous materials and usually causes major environmental
and Vajda, 1987; Romagnoli, 1983]. Recently, data reconciliationproblems. Therefore, production scheduling and control of the pick-
algorithms have been developed for input-output models in lineafing process are inevitably needed to minimize the amount of haz-
dynamic systems in which the measurement errors in the input valardous material contained in the released wastewater as well as waste-
iables are optimally handled in this approach [Kim et al., 1996].  water itself. A conventional PID controller has normally been used
It is well known that most chemical industrial plants cause envi-to control the process. However, it is known widely that a PID con-
ronmental problems due to usage of chemicals in production linedroller cannot handle non-linearity of the pH control problem and
Therefore, a model-based control scheme was developed to coadvanced control techniques are required [Cho et al., 1999]. In ad-
trol dynamic behavior of the process. The control strategy has beedition, in reality, the process flow rates of the system are subjected
to measurement noise leading to poor control performance of any
*To whom correspondence should be addressed. controller. This work then introduces the application of Generic Mod-
E-mail: paisan.k@chula.ac.th el Control (GMC) coupled with steady state data reconciliation to
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Fig. 1. Pickling process.

control level and pH of the pickling process with respect to meassite to the rinse water flow. Here, the amount of drag-out solution of

urement noise. each bath is assumed to be equal to the amount of drag-in solution.
The objective of this work is to control height and pH (or H+
PROCESS AND MATHEMATICAL MODELING concentration) of each bath to a desired set point as illustrated in

Fig. 2(a) and 2(b). Acid concentrations of the first, second and the
In this research, the pickling process (Fig. 1) consists of two maidast baths are set at 1.375]1®.74x10° and 4.11x1G mole per
jor steps: pickling and rinsing steps. The pickling step is to removditer, respectively, by adjusting the acid stream as shown in Fig. 2(a).
surface oxides (scales) and other contaminants such as dirt out @he pH value of each rinsing bath is controlled at 5.5 (The stan-
metals by an immersion of the metals into an aqueous acid solidard of Department of Industrial Work) as shown in Fig. 2(b).
tion. To develop a mathematical model of the pickling process, it is
Metals are immersed in pickling baths--5%, 10% and 15% byassumed that whole baths are perfectly mixed and isothermal. Other
weight hydrochloric acid (HCI), respectively--to remove scales from assumptions made in formulating process models are that the reac-
metal. The direction of metals is countercurrent to acid stream dition involved is first order, all pH values are measurable and the
rection as shown by dotted lines in Fig. 1. The reaction in the baths ifeed concentration is known. Under these assumptions, the mate-
rial balances of pickling baths can be written as follows:
FeO+2HCI - FeC} +H,0 Total mass balances (Density is assumed to be constant),
Then, metals without scales out of pickling baths are immersed in
rinsing baths, which consist of three pure water baths, to rinse acid AE =Fuw~Fsa—q @)

covering the metals. Similarly, the direction of the metals is oppo-
dh

Ad_tm =F1s~Fi "Fuoq @
“LE
Fis A% =F1+F3s ~Fis ~Fisg ©)
@ ) Total component balances,
O+ @ ® ® :
hs : hao hys Ahsd_ct5 =Fy(Cyo ~Cs) —AhgkC, @)
: 5% HCl : b LimsHC 15% HCl
: H ’ d
8- . AN =F (G, ~C.) +0(Cs ~Cu) ~ANKCig ©)
15,4
d
Ah S =F1(C7Cis) *Fss(Cas™Cis) *A(Cro™Cis) Ay KCy5(6)

15?

F., Similarly, with the assumptions above, the material balances of the

@ @ - : rinsing baths are as follows:
: ; @ Total mass balances (Density is assumed to be constant),

dh
by Ad_tl =F,—F ~Fuq ™

d
. Ad_rt12 =F—F, Ry ®

(b) A%th =F,"F:~Fq ©
Fig. 2. (a) Flow diagram of pickling bath controls. (b) Flow dia-
gram of rinsing bath controls. Total component balances,
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dcC
Ahld_tl =F,(C, ~C,) +q(C;s —Cy) (10) AhY .
b =l .m0 S G C)
Ah~ 2 =F,(C,=Cy) (G, ~C;) (11) C
- hct-cy] @3
ARSS =F,(C,~C) +a(C,~C) 12) 2
k
AR’

Here, it was assumed that all process variables are measurable R =(Ck —c
without noise except process flow rates with measurement noise of ?
+1% of true values. Therefore, steady state data reconciliation is +—q—(c§—cg J (24)
implemented to reconcile these flow rates, and these reconciled flow
rates are then used in the GMC controller to determine control action.

DATA RECONCILIATION
GENERIC MODEL CONTROL (GMC) ) ) )
Since the measurements are subject to errors, material balances

Generic Model Control (GMC), an advanced non-linear control are not generally obeyed by the measured values. These values have

technique, uses mathematical models of a plant to determine contr be adjusted or reconciled to obtain more accurate estimates of

action. The process model used can be either linear or non-linealoW rates, which are, at the same time, consistent with the material

Here, 12 states need to be controlled as described above. Thelkéa_llances. To formulate this problem, a mathematical model of a

fore, 12 manipulated variables are determined based on the GMmerocess, relevant constraints and an appropriate objective function
control algorithm as shown below: are needed. The following measurement model is postulated in the

absence of gross errors:

k
Fl;,d =Fl;o -q _A|:Ké,d(h5,sp _hl;) +kZOK§'dAt(h5'Sp_hg):| (13) X=X +¢& (25)
whereX is the vector of measured varialdgs; a vector of ran-

k
Fioo =Fs —Fio —A{K}ovd(hmsp —h{) + > KfovdAt(hmsp—hio)} (14) dom measurement errors. It is usually assumed that (a) the expected
K value ofe, E(€)=0; (b) the successive vectors of measurements are

. - . L . independent, i.eE(g€) =0, for#j; and the covariance matrix is
Fisa —F1+F35—F15—A[K sMss™Mis) + 3 Kls,dAt(hls,sp—hls)} known and positive definitive, i.e., ca}tE(5£)=Q.
15 The reconciled or adjusted vale s related to the measured val-
ueX by the adjustment, a:
Ah 3
e e K, KGO G| 18 csiva @)
10 5. -
AR ) The data reconciliation problem may be formulated as the follow-
Fis= W[K}S(Cmsp—cio) +Y KiAt(Cuos~ Clo) ing constrained weighted least squares estimation problem:
15~ 10, k=0
Min[(X —x)"Q (X —x) =a’Q 'a] 27
~o(cscly +kc§o} @7) @
* subject to the constraint: Bx=c (28)
Ah} K L . . o
k= ﬁ[l@s(cmp—cﬁ) +y K3AH(Cys.5p— Cie) The minimization is carried out by using Lagrange Multipliers. The
s s =e solution is given by
_L K _~ky —_d /~k _~k K ~
Ay (€~ (Gl et 48 x=x-g(®)[BQE)] Bx ] 9)
Manipulated variables in rinsing baths are shown as follows: The covariance of measurement errors is updated each iteration.
r ; 7 Q“=[1 —2H +(H)'H1Q" (30)
K —k =k _ 1 K 2 K
Fia=F—F A_Kl,d(hl,sp hl) +kZOK1,dAt(h1,sp hl)_ (19) Hk:Qkil(B)T[BQkil(B)T]ilB (31)
K :k_ K _ [ 1 _k+k 2 _k_ Where
F2,d F3 F2 A KZ,d(hZ,sp h2) ZKZ,dAt(hZ,sp h2) (20)
L Ko - X =[Fs.4; Fio; Fioa; Fis; Fisa; Fi; Fuas o Fag Fay Fagr Fasy Ful
_ ) , i i o
Faa =F ~F: ~A K3 a(hs o, =h5) + 5 KEAt(hs o, —h3) (21) -1 1000000000O00O0© 0.002
L i J 0-1-1 1 0 00000000 0
AR . Lk ) B=000—1—11000000C C_O
o _Ck){Kz(CLsp‘Cl) * 2 Kabt(Coyy =C) 000001-1100000d 0
2 1
q 0 00O0O0O0OOC1I-2 1000 0
—Ahk(Cis—Ci)} 2 L0000O0O0O0O G1-10 1f 0
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The measured process flow rates with measurement error 1%

In this case, it is assumed that the initial covariance of measuresf true values are adjusted via steady state data reconciliation; after
ment errors (Q) is a unit diagonal matrix with dimension 13x13.that, these reconciled data are incorporated into the Generic Model
Here, process data are adjusted to satisfy conservation laws bas€dntrol (GMC) algorithm to calculate control actions for control
on information of measured variables. Then this reconciled data sgiurposes.
is incorporated into model-based controller to control state vari-
ables to the desired set point. Fig. 3 shows the flowchart of GMC SIMULATION RESULTS
with data reconciliation.

The GMC with data reconciliation is applied to control height,
acid concentration and pH in the steel pickling process. Each 5%,

hy, Cy 2 GMC F ol Process hC 10% and 15% by weight HCI bath is controlled to maintain the con-
centrations at 1.37x102.74x10° and 4.11x10 mole per liter,
A respectively. Simultaneously, the pH values of three rinsing baths
are controlled within 5.5. The height of each bath is controlled not
F over 0.274 meters. The performance of a GMC with data reconcil-
h,C Data Reconciliation
_ _ o 27 27
Fig. 3. Flowchart of GMC with data reconciliation. o7 07
I I
; 27 27
Table 1. Tuning parameters of GMC
2 2
Bath Height tuning Concentration tuning 0 5 10 0 5 10
parameters parameters . 28 .
50 HCl K&, K, K, K, g 27 227
[} [0}
0.1667 0.694 0.891 0.000038 E 27 E
10% HCl Kl K2 Kls K2 S S
0.001667  0.000694 2.55 1.66 26 265 . I
15% HCl  Kisq Kisa Ks K3s 25 25
1.667 0.694 1.333 0.178
Rinsingl  Kig Kiq K> K> 5 25(7y 5N
16 7.1 1 0.0025
P 1 2 1 2 2.5 2.5
RInSIng 2 szd szd K3 K3 0 5 10 0 5 10
16 7.1 1 0.0025 Time Time
Rinsing 3 K, K3 K. K& Fig. 5. The control response of GMC without (left) and with (right)
16 7.1 1 0.0025 data reconciliation in 10% by weight HCI bath.
27 27 27 27
27 27 27 |~ 27
I I I I
27 27 27 27
2 2 2 2
0 5 10 0 5 10 0 5 10 0 5 10
13 14 4.1 4.1
g g 3 5
2 43 /\ I S 4 S 41
E E E £
o ) o )
1.3 1.3 4.0 4.0
0 5 10 0 5 10 0 5 10 0 5 10
238 238 ”3 24
T \/ T
o AW =3 T T
. 238
0 5 10 0 5 10 235 5 10 23% 5 10
Time Time Time Time
Fig. 4. The control response of GMC without (left) and with (right) Fig. 6. The control response of GMC without (left) and with (right)
data reconciliation in 5% by weight HCI baths. data reconciliation in 15% by weight HCI bath.
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Fig. 7. The control response of GMC without (left) and with (right)
data reconciliation in the first rinsing tank.
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Fig. 8. The control response of GMC without (left) and with (right)
data reconciliation in the second rinsing tank.
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Fig. 9. The control response of GMC without (left) and with (right)
data reconciliation in the third rinsing tank.

CONCLUSION

Generic Model Control (GMC), a non-linear model-based con-
troller, requires process models of a plant as well as measurements
of process outputs to determine the control action needed to con-
trol the plant. Therefore, the performance of the GMC controller
relies on the accuracy of not only the mathematical models but also
the measurements of process data. In reality, the measurements of
process outputs often contain measuring error, signal error and noise.
These errors usually lead to poor performance of the GMC con-
troller. In this work, the steady state data reconciliation algorithm is
included in the formulation of the GMC control algorithm to recon-
cile measured process flow rates. For simplification, it is assumed
that the available level and concentration are certain. Simulation
results have demonstrated that the GMC controller with data rec-
onciliation can provide better control performance than that of the
GMC without data reconciliation technique. Therefore, in this case
the inclusion of the steady state data reconciliation technique in the
GMC control algorithm can deal with errors of flow measurements
as well as noise; the GMC controller with data reconciliation tech-
nique is applicable to processes with measurement and signal er-
rors.

iation is then compared to that of a GMC controller. The values of

GMC tuning parameters are given in Table 1.

Figs. 4-6 show the control response of GMC without and with

APPENDIX

data reconciliation in the pickling step and Figs. 7-9 show the conA. Tuning Parameters of GMC Controller

trol response in the rinsing step.

Lee and Sullivan [1988] outline a system for tuning the GMC

It can be seen from Figs. 4-6 that both conventional GMC with-controller based on choosing a target profile of the controlled var-
out and with data reconciliation can control acid concentrations atable, y(t). This profile is characterized by two valuéandr. Lee
the set points with small overshoot. However, the GMC with dataand Sullivan present a figure that outlines the relative control per-
reconciliation provides better control performance than that of GMCformances of different combinations §and 1 as shown in Fig.

controller without data reconciliation.

A.1. Similar plots to the classical second-order response showing

Figs. 7-9 show that the GMC with data reconciliation can con-the normalized response of the systerit y§/ normalized timett/
trol the pH of each bath to the desired set point, whereas the GM@ith & as a parameter can be produced.
without data reconciliation cannot. Therefore, the inclusion of data The general form of GMC control algorithm can be written as

reconciliation technique can enhance the control performance of the

GMC controller.

¥ =Kai(y™ —y) *Kof(y* —y)dt (A1)
The value of two tuning constants, #d K are obtained by us-
Korean J. Chem. Eng.(Vol. 20, No. 6)
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Fig. A.1. Generalized GMC profile specification.

ing the 2fgllowing relati?nships:

K,=%2 K,==

T r

eter is outlined as follows.

From Eqg. (A.1), the first expression is to bring the process back
to steady state due to change in dy/dt. The last expression is intro-
duced in order to make the process have a zero offset. In this work,
the appropriate values of the tuning parameters of each GMC con-
troller to control the concentrations to the desired targets are pres-
ented above. With these parameters the control strategy is able to
hold the process without offset.

NOMENCLATURE

: adjustment

: area of operating tank, meter

: incidence matrix

: constant matrix

: HCI concentration, mole per liter

- height of operating tank, meter
: reaction rate constant, 0.0003267 (mi@nole per liter)
K?: tuning parameters of GMC controller

In tuning the GMC controller, because overshoot is undesirable,
¢ is set to the expected value. After that the valueissbbtained Q
by examining the tuning charts given by Lee and Sullivan. In thisAt
work, twelve controllers are considered here to control the levelx
and concentration of steel pickling process; then each tuning param-

a
A

B

c

C

F : volumetric rate, liter per min
h

k

K?,

q

: amount of acid solution that stuck with samples, 0.002 liter

per min

: the covariance matrix of measurement errors
: sampling time [min]
: state variables

1. 15% acid tank

Greek Letters
€ : a vector of random measurement errors

Levelé=1, t= Lett=1.2 min, thern=1.2 ~ : measured value
K,=(2x1+1.2)=1.667 and K1+(1.%)=0.694 ' : estimated value

pH &=10, t=0.2% Let t=5.6 min, then=22.45
K, =(2x10-2245)=0891  and #(1+(22.45))+52=0.000038  Subscripts

2.10% acid tank 1 : from the first rinsing tank

Levelé=1, t=r Lett=1.2 min, thermr=1.2 2 : from the second rinsing tank
K,=(2x1+1.2)+100=0.001667and }1+(1.2)+1000=0.000694 3 : from the third rinsing tank

pH =05, t=1.29  Lett=1min, them=0.775 5 : from 5% by weight HCI tank
K=(2x0.50.775)x1.98=2.55 and ,K1+(0.77%)=1.66 10 :from 10% by weight HCI tank

3. 5% acid tank 15 :from 15% by weight HCI tank

Levelé=1, t=r Lett=1.2 min, thermr=1.2 35 :from 35% by weight HCI tank
K =(2x1+1.210=0.1667 and K1+(1.%)=0.694 d :drain

pH é=1, t=r Let t=0.75 min, them=0.75 w  water

K,=(2x1-0.75)+2=1.3333
4.The 3 rinsing tank

and  K(1+(0.75))+10=0.178

sp :setpoint

Level&=3, =08  Lett=0.3min, them=0.375 Superscripts
K,=2x3-0.375=16 and K1+(0.375)=7.1 k ;attime k
pH &=10, t=02%  Lett=5min, ther=20 (k—1): attime (k-1)
K,=2x1G-20=1 and K=1+(2()=0.0025
5. The 2° rinsing tank REFERENCES
Level&=3, t=0.8 Let t=0.3 min, therr=0.375
K,=2x3-0.375=16 and K1+0.37%)=7.1 Arpornwichanop, A., Kittisupakorn, P. and Hussain, M. A., “Model-
pH &=10, t=0.2% Let t=5 min, therr=20 Based Control Strategies for a Chemical Batch Reactor with Exo-
K,=2x16-20=1 and K=1+(20)=0.0025 thermic ReactionKorean J. Chem. End.9, 221 (2002).
6. The F'rinsing tank Cho, K. H,, Yeo, Y.K,, Kim, J. S. and Koh, S.T., “Fuzzy Model Pre-
Level&=3, t=0.8 Let t=0.3 min, ther=0.375 dictive Control of Nonlinear pH Procedsdrean J. Chem. End6,
K,=2x3-0.375=16 and K1+(0.375)=7.1 208 (1999).
pH &=10, t=0.2% Let t=5 min, therr=20 Cott, B. and Macchietto, S., “Temperature Control of Exothermic Batch
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