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Abstract −−−−To implement an advanced control algorithm, measurements of process outputs are usually used to
determine control action to a process. Nevertheless, measurements of process outputs are often subjected to measurin
and signal errors as well as noise. Therefore, in this work, Generic Model Control (GMC), an advanced control
technique, with data reconciliation technique has been applied to control the pH of the pickling process consisting of
three pickling and three rinsing baths. Here, the data reconciliation problem involves six nodes and fourteen streams.
The presence of errors in the data set is determined and identified via measurement test. In addition, the measuremen
error covariance is initially assumed to be a known variance matrix and is updated every iteration. Simulation results
have shown that the reconciled process data give a better view of the true states of the process than raw measuring
data. With these reconciled process data, the GMC controller can control the process at a desired set point with great
success.
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INTRODUCTION

The accuracy and consistency of process data are the key to effi-
cient operation of chemical plants. The measurements from a phys-
ical system are generally noisy and do not verify balance equa-
tions. These raw data with undetected biased errors result in false
control of the process so that they need to be reconciled to elimi-
nate known errors and measurement noise. The problem of data
reconciliation consists of obtaining and estimating the true states
that verify balance equations.

Mah et al. [1976] studied the problem of the identification of the
source of gross errors and developed a series of rules (based on graph-
theoretical results) that enhance the effectiveness of the algorithm
search. Data reconciliation problems involving linear models were
well studied. Crowe et al. [1983] used a matrix projection method
to decompose the problem so that the measured and unmeasured
variables can be evaluated sequentially. Later, Crowe [1986] extend-
ed this method for problems with bilinear constraints. Various sta-
tistical tests have been proposed to detect gross errors [Mah, 1990;
Romagnoli, 1983; Romagnoli and Stephanopoulos, 1981]. Gen-
eral reconciliation methods are based on the hypothesis that meas-
urement errors are random Gaussian variables with a known cova-
riance matrix and zero mean. In most practical situations, this ma-
trix is unknown or known approximately [Keller et al., 1992; Valko
and Vajda, 1987; Romagnoli, 1983]. Recently, data reconciliation
algorithms have been developed for input-output models in linear
dynamic systems in which the measurement errors in the input var-
iables are optimally handled in this approach [Kim et al., 1996].

It is well known that most chemical industrial plants cause envi-
ronmental problems due to usage of chemicals in production lines.
Therefore, a model-based control scheme was developed to con-
trol dynamic behavior of the process. The control strategy has been

applied to chemical process system for control purposes for the
ten years. A new method to handle the constraints on manipu
variables for multivariable unstable processes was proposed by
and Park [1991]. Kittisupakorn and Hussain [2000], and Arpo
wichanop et al. [2002] presented a model-based control stra
together with extended Kalman Filter (EKF) for reactant conc
tration control of chemical reactors and for temperature contro
batch reactors with exothermic reactions, respectively. Furtherm
nonlinear control algorithms using feedback input-output lineari
tion applied to a lab-scale batch eater-interchange reaction sy
were discussed by Park and Park [1999]. Generic Model Con
(GMC), one of the most popular model-based controllers, is a c
trol algorithm capable of using a non-linear process model dire
In 1989, Lee et al. extended the application of the model based G
controller to a forced circulation single-stage evaporator. Later, t
examined the use of GMC for controlling the level in a surge ta
[1991]. Cott and Macchietto [1989], and Kershenbaum and K
tisupakorn [1994] studied the temperature control of an exother
batch reactor via using a GMC controller. Farrell and Tsai [19
implemented the GMC algorithm for the batch crystallization pr
cess.

The steel pickling process has used concentrated chemica
production lines, and wastewater released from the process 
tains hazardous materials and usually causes major environm
problems. Therefore, production scheduling and control of the p
ling process are inevitably needed to minimize the amount of h
ardous material contained in the released wastewater as well as w
water itself. A conventional PID controller has normally been us
to control the process. However, it is known widely that a PID c
troller cannot handle non-linearity of the pH control problem a
advanced control techniques are required [Cho et al., 1999]. In
dition, in reality, the process flow rates of the system are subje
to measurement noise leading to poor control performance of
controller. This work then introduces the application of Generic M
el Control (GMC) coupled with steady state data reconciliation
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control level and pH of the pickling process with respect to meas-
urement noise.

PROCESS AND MATHEMATICAL MODELING

In this research, the pickling process (Fig. 1) consists of two ma-
jor steps: pickling and rinsing steps. The pickling step is to remove
surface oxides (scales) and other contaminants such as dirt out of
metals by an immersion of the metals into an aqueous acid solu-
tion.

Metals are immersed in pickling baths--5%, 10% and 15% by
weight hydrochloric acid (HCl), respectively--to remove scales from
metal. The direction of metals is countercurrent to acid stream di-
rection as shown by dotted lines in Fig. 1. The reaction in the baths is

Then, metals without scales out of pickling baths are immersed in
rinsing baths, which consist of three pure water baths, to rinse acid
covering the metals. Similarly, the direction of the metals is oppo-

site to the rinse water flow. Here, the amount of drag-out solution
each bath is assumed to be equal to the amount of drag-in solu

The objective of this work is to control height and pH (or H
concentration) of each bath to a desired set point as illustrate
Fig. 2(a) and 2(b). Acid concentrations of the first, second and
last baths are set at 1.37×10−3, 2.74×10−3 and 4.11×10−3 mole per
liter, respectively, by adjusting the acid stream as shown in Fig. 2
The pH value of each rinsing bath is controlled at 5.5 (The s
dard of Department of Industrial Work) as shown in Fig. 2(b).

To develop a mathematical model of the pickling process, i
assumed that whole baths are perfectly mixed and isothermal. O
assumptions made in formulating process models are that the 
tion involved is first order, all pH values are measurable and 
feed concentration is known. Under these assumptions, the m
rial balances of pickling baths can be written as follows:

Total mass balances (Density is assumed to be constant),

(1)

(2)

(3)

Total component balances,

(4)

(5)

(6)

Similarly, with the assumptions above, the material balances o
rinsing baths are as follows:

Total mass balances (Density is assumed to be constant),

(7)

(8)

(9)

Total component balances,

FeO + 2HCl FeCl2 + H2O→

A
dh5

dt
-------  = F10 − F5 d,  − q

A
dh10

dt
---------  = F15 − F10 − F10 d,

A
dh15

dt
---------  = F1+ F35 − F15 − F15 d,

Ah5

dC5

dt
--------  = F10 C10 − C5( ) − Ah5kC5

Ah10

dC10

dt
---------- = F15 C15 − C10( ) + q C5 − C10( ) − Ah10kC10

Ah15

dC15

dt
----------  = F1 C1− C15( ) + F35 C35− C15( )+ q C10− C15( ) − Ah15kC15

A
dh1

dt
-------  = F2 − F1 − F1 d,

A
dh2

dt
-------  = F3 − F2 − F2 d,

A
dh3

dt
-------  = Fw − F3 − F3 d,

Fig. 1. Pickling process.

Fig. 2. (a) Flow diagram of pickling bath controls. (b) Flow dia-
gram of rinsing bath controls.
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(10)

(11)

(12)

Here, it was assumed that all process variables are measurable
without noise except process flow rates with measurement noise of
±1% of true values. Therefore, steady state data reconciliation is
implemented to reconcile these flow rates, and these reconciled flow
rates are then used in the GMC controller to determine control action.

GENERIC MODEL CONTROL (GMC)

Generic Model Control (GMC), an advanced non-linear control
technique, uses mathematical models of a plant to determine control
action. The process model used can be either linear or non-linear.
Here, 12 states need to be controlled as described above. There-
fore, 12 manipulated variables are determined based on the GMC
control algorithm as shown below:

(13)

(14)

(15)

(16)

(17)

(18)

Manipulated variables in rinsing baths are shown as follows:

(19)

(20)

(21)

(22)

(23)

(24)

DATA RECONCILIATION

Since the measurements are subject to errors, material bala
are not generally obeyed by the measured values. These values
to be adjusted or reconciled to obtain more accurate estimate
flow rates, which are, at the same time, consistent with the mat
balances. To formulate this problem, a mathematical model 
process, relevant constraints and an appropriate objective fun
are needed. The following measurement model is postulated in
absence of gross errors:

(25)

where  is the vector of measured variables; ε is a vector of ran-
dom measurement errors. It is usually assumed that (a) the exp
value of ε, E(ε)=0; (b) the successive vectors of measurements
independent, i.e., =0, for i i≠j; and the covariance matrix is
known and positive definitive, i.e., cov(ε)= =Q.

The reconciled or adjusted value  is related to the measured
ue  by the adjustment, a:

(26)

The data reconciliation problem may be formulated as the follo
ing constrained weighted least squares estimation problem:

(27)

subject to the constraint: Bx=c (28)

The minimization is carried out by using Lagrange Multipliers. T
solution is given by

(29)

The covariance of measurement errors is updated each iteratio

(30)

(31)

where

Ah1

dC1

dt
--------  = F2 C2 − C1( ) + q C15 − C1( )

Ah2

dC2

dt
--------  = F3 C3 − C2( ) + q C1 − C2( )

Ah3

dC3

dt
--------  = Fw Cw − C3( )  + q C2 − C3( )

F5 d,
k

 = F10
k

 − q − A K 5 d,
1 h5 sp,  − h5

k( ) + K5 d,
2 ∆t h5 sp,  − h5

k( )
k= 0

k

∑

F10 d,
k

 = F15
k

 − F10
k

 − A K 10 d,
1 h10 sp,  − h10

k( )  + K10 d,
2 ∆t h10 sp,  − h10

k( )
k = 0

k

∑

F15 d,
k

 = F1 + F35
k − F15

k − A K 15 d,
1 h15 sp, − h15

k( )+ K15 d,
2 ∆t h15 sp, − h15

k( )
k = 0

k

∑

F10
k

 = 
Ah5

k

C10
k

 − C5
k( )

---------------------- K10
1 C5 sp, − C5

k( )+ K10
2 ∆t C5 sp, − C5

k( ) + kC5
k

k = 0

k

∑

F15
k

 =  
Ah10

k

C15
k

 −  C10
k( )

------------------------ K15
1 C10 sp,  − C10

k( ) + K15
2 ∆t C10 sp,  − C10

k( )
k= 0

k

∑

− 
q

Ah10
k

---------- C5
k

 − C10
k( )  + kC10

k

F35
k

 =  
Ah15

k

C35
k

 −  C15
k( )

------------------------ K35
1 C15 sp,  − C15

k( ) + K35
2 ∆t C15 sp,  − C15

k( )
k= 0

k

∑

− 
F1

Ah15
k

---------- C1
k

 − C15
k( )  − 

q

Ah15
k

---------- C10
k

 − C15
k( ) + kC15

k

F1 d,
k

 = F2
k

 − F1
k

 − A K 1 d,
1 h1 sp,  − h1

k( ) + K1 d,
2 ∆t h1 sp,  − h1

k( )
k = 0

k

∑

F2 d,
k

 = F3
k

 − F2
k

 − A K 2 d,
1 h2 sp,  − h2

k( ) + K2 d,
2 ∆t h2 sp,  − h2

k( )
k = 0

k

∑

F3 d,
k

 = Fw
k

 − F3
k

 − A K 3 d,
1 h3 sp,  − h3

k( ) + K3 d,
2 ∆t h3 sp,  − h3

k( )
k = 0

k

∑

F2
k

 = 
Ah1

k

C2
k

 − C1
k( )

-------------------- K2
1 C1 sp,  − C1

k( )  + K2
2∆t C1 sp,  − C1

k( )
k = 0

k

∑

−  
q

Ah1
k

--------- C15
k

 − C1
k( )

F3
k

 = 
Ah2

k

C3
k

 − C2
k( )

-------------------- K3
1 C2 sp,  − C2

k( ) + K3
2∆t C2 sp,  − C2

k( )
k = 0

k

∑

− 
q

Ah2
k

--------- C1
k

 −  C2
k( )

Fw
k

 = 
Ah3

k

C3
k

 − Cw
k( )

--------------------- − Kw
1 C3 sp,  − C3

k( )  − Kw
2 ∆t Cw sp,  − Cw

k( )
k = 0

k

∑

+ 
q

Ah3
k

--------- C2
k

 −  C3
k( )

x̃  = x  + ε

x̃

E εiεj
T( )

E εiεj
T( )

x'
x̃

x' = x̃  + a

x̃  − x( )TQ
− 1 x̃  − x( ) = aTQ

− 1a[ ]
x v,

limMin

x'k = x̃ − Qk B( )T BQk B( )T[ ]− 1
Bx  − c[ ]

Qk
 = I  − 2Hk

 + Hk( )T
Hk[ ]Qk − 1

Hk
 = Qk − 1 B( )T BQk − 1 B( )T[ ] − 1

B

x  = F5 d, ; F10; F10 d, ; F15; F15 d, ; F1; F1 d, ; F2; F2 d, ; F3; F3 d, ; F35; Fw[ ]

B  = 

− 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 − 1 − 1 1 0 0 0 0 0 0 0 0 0 

0 0 0− 1 − 1 1 0 0 0 0 0 0 0 

0 0 0 0 0− 1 − 1 1 0 0 0 0 0 

0 0 0 0 0 0 0− 1 − 1 1 0 0 0 

0 0 0 0 0 0 0 0 0− 1 − 1 0 1 

c = 

0.002

0

0

0

0

0
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In this case, it is assumed that the initial covariance of measure-
ment errors (Q) is a unit diagonal matrix with dimension 13×13.
Here, process data are adjusted to satisfy conservation laws based
on information of measured variables. Then this reconciled data set
is incorporated into model-based controller to control state vari-
ables to the desired set point. Fig. 3 shows the flowchart of GMC
with data reconciliation.

The measured process flow rates with measurement error ±
of true values are adjusted via steady state data reconciliation;
that, these reconciled data are incorporated into the Generic M
Control (GMC) algorithm to calculate control actions for contr
purposes.

SIMULATION RESULTS

The GMC with data reconciliation is applied to control heigh
acid concentration and pH in the steel pickling process. Each 
10% and 15% by weight HCl bath is controlled to maintain the c
centrations at 1.37×10−3, 2.74×10−3 and 4.11×10−3 mole per liter,
respectively. Simultaneously, the pH values of three rinsing ba
are controlled within 5.5. The height of each bath is controlled 
over 0.274 meters. The performance of a GMC with data recon

Fig. 3. Flowchart of GMC with data reconciliation.

Table 1. Tuning parameters of GMC

Bath
Height tuning

parameters
Concentration tuning

parameters

5% HCl
0.1667 0.694 0.891 0.000038

10% HCl
0.001667 0.000694 2.55 1.66

15% HCl
1.667 0.694 1.333 0.178

Rinsing 1
16 7.1 1 0.0025

Rinsing 2
16 7.1 1 0.0025

Rinsing 3
16 7.1 1 0.0025

K5 d,
1 K5 d,

2 K10
1 K10

2

K10 d,
1 K10 d,

2 K15
1 K15

2

K15 d,
1 K15 d,

2 K35
1 K35

2

K1 d,
1 K1 d,

2 K2
1 K2

2

K2 d,
1 K2 d,

2 K3
1 K3

2

K3 d,
1 K3 d,

2 Kw
1 Kw

2

Fig. 4. The control response of GMC without (left) and with (right)
data reconciliation in 5% by weight HCl baths.

Fig. 5. The control response of GMC without (left) and with (right)
data reconciliation in 10% by weight HCl bath.

Fig. 6. The control response of GMC without (left) and with (right)
data reconciliation in 15% by weight HCl bath.
November, 2003
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iation is then compared to that of a GMC controller. The values of
GMC tuning parameters are given in Table 1.

Figs. 4-6 show the control response of GMC without and with
data reconciliation in the pickling step and Figs. 7-9 show the con-
trol response in the rinsing step.

It can be seen from Figs. 4-6 that both conventional GMC with-
out and with data reconciliation can control acid concentrations at
the set points with small overshoot. However, the GMC with data
reconciliation provides better control performance than that of GMC
controller without data reconciliation.

Figs. 7-9 show that the GMC with data reconciliation can con-
trol the pH of each bath to the desired set point, whereas the GMC
without data reconciliation cannot. Therefore, the inclusion of data
reconciliation technique can enhance the control performance of the
GMC controller.

CONCLUSION
Generic Model Control (GMC), a non-linear model-based co

troller, requires process models of a plant as well as measurem
of process outputs to determine the control action needed to 
trol the plant. Therefore, the performance of the GMC contro
relies on the accuracy of not only the mathematical models but 
the measurements of process data. In reality, the measureme
process outputs often contain measuring error, signal error and n
These errors usually lead to poor performance of the GMC c
troller. In this work, the steady state data reconciliation algorithm
included in the formulation of the GMC control algorithm to reco
cile measured process flow rates. For simplification, it is assum
that the available level and concentration are certain. Simula
results have demonstrated that the GMC controller with data 
onciliation can provide better control performance than that of 
GMC without data reconciliation technique. Therefore, in this c
the inclusion of the steady state data reconciliation technique in
GMC control algorithm can deal with errors of flow measureme
as well as noise; the GMC controller with data reconciliation te
nique is applicable to processes with measurement and signa
rors.

APPENDIX

A. Tuning Parameters of GMC Controller
Lee and Sullivan [1988] outline a system for tuning the GM

controller based on choosing a target profile of the controlled v
iable, ysp(t). This profile is characterized by two values, ξ and τ. Lee
and Sullivan present a figure that outlines the relative control p
formances of different combinations of ξ and τ as shown in Fig.
A.1. Similar plots to the classical second-order response show
the normalized response of the system y/ysp vs. normalized time t/τ
with ξ as a parameter can be produced.

The general form of GMC control algorithm can be written as

(A.1)

The value of two tuning constants, K1 and K2 are obtained by us-

ỹ  = K1 ysp
 − y( ) + K2 ysp

 − y( )dt∫

Fig. 7. The control response of GMC without (left) and with (right)
data reconciliation in the first rinsing tank.

Fig. 8. The control response of GMC without (left) and with (right)
data reconciliation in the second rinsing tank.

Fig. 9. The control response of GMC without (left) and with (right)
data reconciliation in the third rinsing tank.
Korean J. Chem. Eng.(Vol. 20, No. 6)
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In tuning the GMC controller, because overshoot is undesirable,
ξ is set to the expected value. After that the value of τ is obtained
by examining the tuning charts given by Lee and Sullivan. In this
work, twelve controllers are considered here to control the level
and concentration of steel pickling process; then each tuning param-

eter is outlined as follows.
From Eq. (A.1), the first expression is to bring the process b

to steady state due to change in dy/dt. The last expression is 
duced in order to make the process have a zero offset. In this w
the appropriate values of the tuning parameters of each GMC 
troller to control the concentrations to the desired targets are p
ented above. With these parameters the control strategy is ab
hold the process without offset.

NOMENCLATURE

a : adjustment
A : area of operating tank, meter2

B : incidence matrix
c : constant matrix
C : HCl concentration, mole per liter
F : volumetric rate, liter per min
h : height of operating tank, meter
k : reaction rate constant, 0.0003267 (min)−1·(mole per liter)
K1, K2 : tuning parameters of GMC controller
q : amount of acid solution that stuck with samples, 0.002 l

per min
Q : the covariance matrix of measurement errors
∆t : sampling time [min]
x : state variables

Greek Letters
ε : a vector of random measurement errors
~ : measured value
' : estimated value

Subscripts
1 : from the first rinsing tank
2 : from the second rinsing tank
3 : from the third rinsing tank
5 : from 5% by weight HCl tank
10 : from 10% by weight HCl tank
15 : from 15% by weight HCl tank
35 : from 35% by weight HCl tank
d : drain
w : water
sp : setpoint

Superscripts
k : at time k
(k− 1): at time (k− 1)
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